

Bi-Directional Translator Architectures

AN-9740/D

Introduction

Voltage translators, or "level shifters" as they are sometimes called, allow the coupling of signals that do not share common V_{CC} domains. For example, a signal generated from a 1.0 V device may need to connect to a 3.3 V device. In Figure 1, the FXLP34 voltage translator can be used to level shift 1.0 V signals from device A to 3.3 V signals at device B.

Uni-Directional Voltage Translation

The voltage translation of Figure 1 is simple to implement in a design. As long as the V_{CCA} pin of the translator agrees with the V_{CC} of device A, the V_{CCB} pin of the translator agrees with the V_{CC} of device B, and V_{CCA} and V_{CCB} are within their respective specified operating voltage ranges; device B automatically receive a valid 3.3 V signal from device A, even though device A generates only a 1.0 V signal. The FXLP34 translator delivers 2.6 mA of DC drive when V_{CCB} equals 3 V.

The Figure 1 translator is limited to level shifting from device A to device B. This translator is considered uni-directional. Some level shifting applications require bi-directional functionality, as seen in Figure 2.

Bi-Directional Voltage Translation

The FXLH1T45 translator of Figure 2 provides bi-directional level shifting, where the direction is determined by the DIR pin. If DIR is LOW, device B transmits to device A (receiver). If DIR is HIGH, device A transmits to device B (receiver). To minimize bus contention, device A and device B should disable (3-state) their respective I/O pins during direction change. The FXLH1T45 delivers 18 mA of DC drive when the output $V_{\rm CC}$ equals 3 V.

The bi-directional translator of Figure 2 is somewhat limited because the burden of direction control is on either device A or device B. This limitation led to the innovation of the "auto-direction" translator of Figure 3.

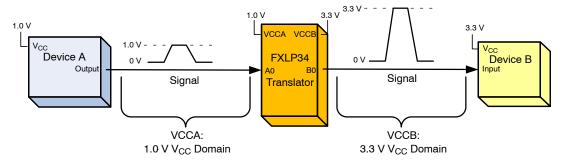


Figure 1. FXLP34 Uni-Directional Translator

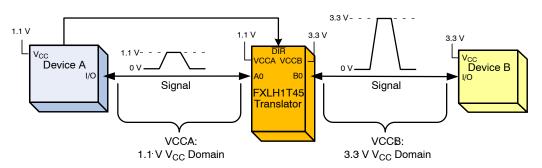


Figure 2. FXLH1T45 Bi-Directional Translator

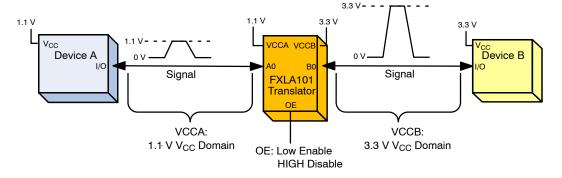


Figure 3. FXLA101 Auto-Direction Bus Hold Translator

The auto-direction translator of Figure 3 does not require a direction pin. It performs automatic bi-directional level shifting between device A and device B with a proprietary Bus Hold circuit.

Bus Hold

Figure 4 illustrates the basic functionality of the bus hold circuit. Essentially, the dynamic driver is a strong driver, on the order of 20 mA – 30 mA (depending on the V_{CC}), that temporarily turns on for approximately 10 – 40 ns after detecting a LOW-to-HIGH or HIGH-to-LOW edge on either A or B. After the dynamic driver has turned off (timed out), a weaker driver holds the state previously delivered by the dynamic driver. This weak bus hold driver holds this state until the next external A or B side LOW-to-HIGH or HIGH-to-LOW transition is sensed. Typically, $500\,\mu\text{A}$ of external sourcing or sinking is required to override the bus hold by an external device.

The strong dynamic driver quickly charges and discharges capacitive transmission lines. This dynamic driver is designed to drive a 50 pF. With the dynamic driver turned off in the bus-hold state, power consumption is minimized, where $I_{\rm CC}$ is less than 10 μA .

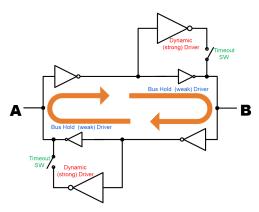


Figure 4. Bus Hold Block Diagram, One Channel

Figure 5 shows a detailed view of the bus hold auto-direction architecture. When \overline{OE} = Low, the edge detectors on A and B senses transitions on either port meant to override a currently held state. When one edge detector

senses a transition, this edge detector turns the other edge detector off, sets the appropriate direction and then triggers the dynamic driver for that direction. This dynamic path is indicated by the orange patterned arrow in Figure 5. The dynamic driver is on for approximately 10 ns to 40 ns. When the dynamic driver turns off with the output state changed, the "holder" continues holding this state with a weak drive strength of 100 μ A to 500 μ A, depending on the referenced V_{CC} . This hold path or loop is indicated by the solid orange arrows. Both edge detectors will be enabled during this hold state.

When \overline{OE} = High, A and B are disconnected from each other and both edge detectors are disabled. A and B are held in their current states by the "holders". These hold paths or loops are indicated by the solid green arrows.

In summary, the "holders" on A and B are the weak drivers responsible for holding the current voltage states. The A and B port dynamic drivers (with timeout) are the strong drivers responsible for hard driving a new state sensed by the edge detector circuit. The MUXes are responsible for changing ownership of the bus hold. When enabled $(\overline{OE} = \text{Low})$, A holds the B port and B holds the A port. If disabled $(\overline{OE} = \text{High})$, A holds the A port and B holds the B port.

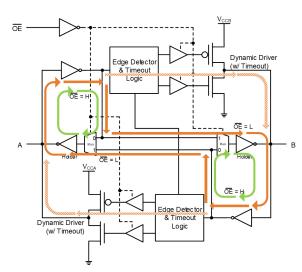


Figure 5. Bus Hold Block Detailed Diagram, One Channel

Bus Hold Parameters

The strength of the strong output driver during LH / HL transitions is captured by the dynamic output current HIGH / LOW (IOLH, IOHD) plot in Figure 6. Because the strong output driver is turned on only during LH/HL transitions, the actual drive current is difficult to measure directly. Approximate the drive current with the following formulas:

$$\begin{split} &I_{OHD} \approx \left(C_L \, + \, C_{IO}\right) \times \frac{\Delta V_{OUT}}{\Delta t} \\ &= \left(C_L \, + \, C_{IO}\right) \times \frac{\left(20\% \, - \, 80\%\right) \, \times \, V_{CCO}}{t_{RISE}} \end{split} \tag{eq. 1}$$

$$\begin{split} &I_{OLD} \approx \left(C_L \, + \, C_{IO}\right) \times \frac{\Delta V_{OUT}}{\Delta t} \\ &= \left(C_L \, + \, C_{IO}\right) \times \frac{\left(80\% \, - \, 20\%\right) \, \times \, V_{CCO}}{t_{FALL}} \end{split} \tag{eq. 2}$$

where $C_{I/O}$ = the typical lumped capacitance and V_{CCO} is the supply voltage of the output driver.

Figure 6 depicts typical dynamic output current of the auto-direction bus hold Architecture with a lumped load capacitance of 4 pF. The bus hold dynamic driver is designed to drive a minimum of 50 pF.

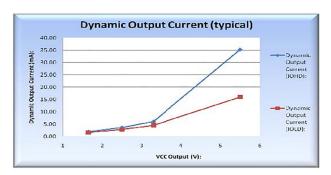


Figure 6. Dynamic Output Current of Auto-Direction
Bus Hold

Bus Hold DC Parameters

In addition to the above AC parameters (I_{OHD} and I_{OLD}), there are three fundamental DC parameters pertaining to the Bus Hold Circuitry:

- 1. II(HOLD): Bus-Hold Input Minimum Drive Current
- 2. II(ODH): Bus-Hold Input Overdrive High Current
- 3. II(ODL): Bus-Hold Input Overdrive Low Current

Bus Hold Minimum Drive Current

Specifies the minimum amount of current the bus hold driver can source/sink. The BUS hold minimum drive current (I_{IHOLD}) is V_{CC} dependent and guaranteed in the DC electrical tables of the datasheet. The intent is to maintain a valid state after the dynamic driver has timed out, but can be overridden when a data transition is recommended.

Bus Hold Input Overdrive Drive Current

Specifies the minimum amount of current required (by an external device) to overdrive the bus hold in the event of a direction change. The bus hold overdrive (I_{IODH} , I_{IODL}) is V_{CC} dependent and guaranteed in the DC electrical tables of the datasheet.

Auto-Direction Hybrid Driver Architecture

The auto-direction bus hold architecture is well suited for push / pull driver environments and should not be used in open-drain environments where pull-up resistors are used. Pull-up resistors conflict with the bus hold circuitry, resulting in unwanted behavior.

To provide the auto-direction feature for open-drain environments using pull-up resistors, the hybrid driver architecture like Figure 7 is required.

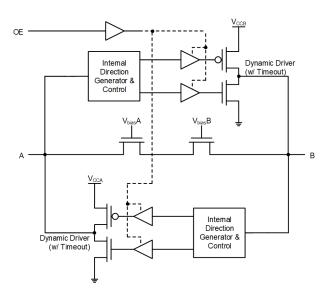


Figure 7. Hybrid Driver Block Diagram, One Channel

I²C is a very common application for open-drain level shifting and is a driving force behind the hybrid driver architecture design. The FXMA2102 I²C / SMBUS translator (Figure 8) uses the hybrid driver of Figure 7.

AN-9740/D

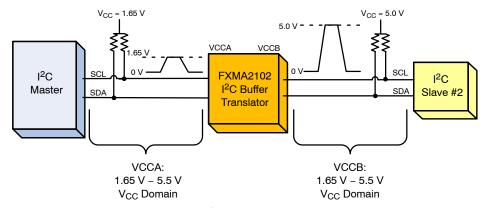


Figure 8. FXMA2102 I²C/SMBUS Translator Application

Hybrid Architecture Theory of Operation and I²C

The FXMA2102 is designed for high-performance level shifting and buffer / repeating in an I^2C application. Figure 7 shows that each bi-directional channel contains two series N-passgates and two dynamic drivers. This hybrid architecture is highly beneficial in an I^2C application where auto-direction is a necessity.

For example, during the following three I²C protocol events, the bus direction needs to change from master to slave or from slave to master without the occurrence of an edge:

- Clock Stretching
- Slave's ACK Bit (9th bit = 0) Following a Master's Write Bit (8th bit = 0)
- Clock Synchronization and Multi Master Arbitration

If there is an I²C translator between the master and slave in these examples, the I²C translator must change direction when both A and B ports are LOW. The N-passgates can accomplish this task very efficiently because, when both A and B ports are LOW, the N-passgates act as a low resistive short between the two (A and B) ports.

Due to I²C's open-drain topology, I²C masters and slaves are not push/pull drivers. Logic LOWs are "pulled down" (I_{sink}), while logic HIGHs are "let go" (3-state). For example, when the master lets go of SCL (SCL always comes from the master), the rise time of SCL is largely determined by the RC time constant, where $R = R_{PU}$ and C = the bus capacitance. If the FXMA2102 is attached to the master [on the A port] in this example, and there is a slave on the B port, the Npassgates act as a low resistive short between both ports until either of the port's V_{CC}/2 thresholds are reached. After the RC time constant has reached the V_{CC}/2 threshold of either port, the port's edge detector triggers both dynamic drivers to drive their respective ports in the LOW-to-HIGH (LH) direction, accelerating the rising edge. The resulting rise time resembles the scope shot in Figure 9. Effectively, two distinct slew rates appear in rise time. The first slew rate (slower) is the RC time constant of the bus. The second slew rate (much faster) is the dynamic driver accelerating the edge.

If both the A and B ports of the translator are HIGH, a high-impedance path exists between the A and B ports because both the Npassgates are turned off. If a master or slave device decides to pull SCL or SDA LOW, that device's driver pulls down (I_{sink}) SCL or SDA until the edge reaches the A or B port VCC/2 threshold. When either the A or B port threshold is reached, the port's edge detector triggers both dynamic drivers to drive their respective ports in the HIGH-to-LOW (HL) direction, accelerating the falling edge.

The auto-direction hybrid driver architecture is designed to drive a minimum of 400 pF. 400 pF is the maximum capacitance of an I^2C segment. The FXMA2102 scope shot of Figure 9 reflects a (30%-70%) rise time of 112 ns, with a 600 pF lumped load and a 2.2 k Ω external pull-up resistor. According to the I^2C specification, the maximum rise time in Fast Mode (400 kHz) is 300 ns, so the FXMA2102 is a strong choice for the I^2C application. For more information about the FXMA2102 I^2C translator, please see application note AN-9718.

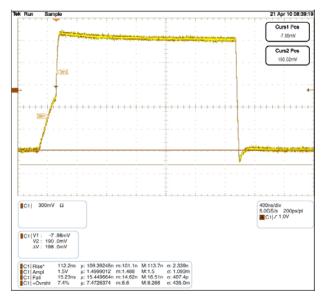


Figure 9. Hybrid Driver Scope Shot 600 pF||2.2 k Ω

Hybrid Architecture and Push-Pull

While the bus hold auto-direction architecture cannot be used for open-drain environments, the hybrid driver architecture can be used for open-drain environments as well as push-pull environments, as long as pull-up resistors are present on the A-side and B-side IOs.

Architecture Bandwidth

This note has discussed three different architectures for bi-directional level shifting:

- Bi-directional with a direction pin
- Auto-direction with BUS hold
- Auto-direction with hybrid driver

Of the three, bi-directional level shifting architectures discussed, auto-direction hybrid in an open-drain environment is the slowest. This is due to the intrinsic bandwidth limiting, LOW-to-HIGH transition RC time constant before the edge rate accelerators trigger. Given a push / pull environment, all three bi-direction architectures exhibit similar bandwidth, mainly limited by their respective V_{CC} translation combinations. Most translator datasheets publish maximum data rates vs. V_{CC} combinations. The worst-case data rate is typically when either $V_{CCA/B}$ is at its lowest rated value.

Direction Change Time

There may be instances when an application requires very fast latency for the direction change. Both auto-direction architectures; bus hold and hybrid, offer slower "direction change times" (40 ns typical) vs. the bi-directional architecture (4 ns typical) requiring the direction pin. If fast direction time is critical, and the system can provide

direction pin control, then the bi-directional with direction pin architecture may be a better choice over the auto-direction architectures.

For example, the application in Figure 10 illustrates a proprietary chip-to-chip interface where the clock requires uni-directional level shifting from 1.2 V to 3.3 V at 60 MHz. Meanwhile, the data signal needs to be translated from 1.2 V to 3.3 V at 60 Mbps (30 MHz) in both directions. The direction change needs to occur within one clock cycle or 16.7 ns. The FXL2TD245 is a better choice for this application vs. a BUS hold type auto-direction translator (like the FXLA102) because the FXL2TD245 direction change is much faster.

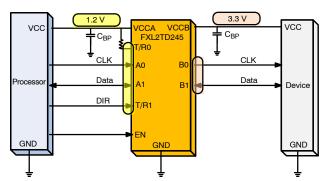


Figure 10. Proprietary Chip-to-Chip 60 MHz
Three-Wire Interface

The simulation (worst-case slow process and -40° C temperature) excerpt shown in Figure 11, assuming a load of 5 pF||10 k Ω , reveals that the FXL2TD245 successfully changes direction within one 16.7 ns clock cycle.

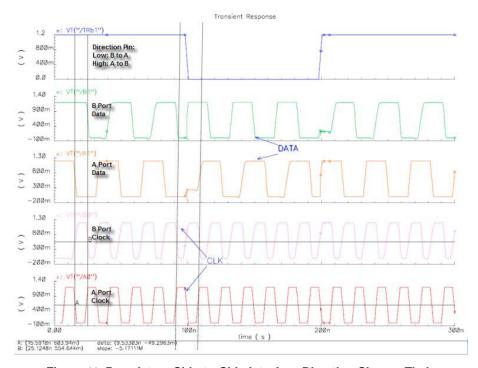


Figure 11. Proprietary Chip-to-Chip Interface Direction Change Timing

Table 1 illustrates the relationship between direction change time and $V_{\rm CC}$ translation range. FXM devices level shift from 1.65 V to 5.5 V in either direction. FXL devices level shift from 1.1 V to 3.6 V in either direction. While the dynamic driver accelerates the edge in one direction, the opposite edge detection is disabled. By definition, direction change is inhibited until the dynamic driver edge rate accelerator has elapsed.

Hybrid Driver Applications

Aside from the I²C and SMBUS applications, the hybrid driver is a great fit for level shifting the I/O pin of the SIM card interface.

Table 1. TYPICAL DIRECTION CHANGE TIME AND V_{CC} TRANSLATION RANGE

Architecture:	V _{CCA} (V)	V _{CCB} (V)	Direction Change	Direction Change Time	Unit
Autosense-Hybrid	5.50	5.50	Either direction	25	ns
Autosense-Hybrid	1.65	3.30	A to B \rightarrow B to A	40	ns
Autosense-Hybrid	3.30	1.65	A to B \rightarrow B to A	80	ns
Autosense-Hybrid	1.65	5.5	A to B \rightarrow B to A	25	ns
Autosense-Hybrid	5.50	1.65	A to B \rightarrow B to A	80	ns
Autosense-Hybrid	1.65	1.65	A to B \rightarrow B to A	80	ns
Autosense-Bus Hold	3.60	3.60	Either direction	4	ns
Autosense-Bus Hold	1.20	3.60	A to B \rightarrow B to A	15	ns
Autosense-Bus Hold	3.60	1.20	A to B \rightarrow B to A	25	ns
Autosense-Bus Hold	1.20	1.20	Either direction	40	ns

SIM Card Applications

Figure 12 is a block diagram of the FXL4555 SIM card controller/translator with integrated LDO. The VSEL pin controls the card port voltage to be 1.8 V or 3 V, depending on the inserted SIM card. Per the ISO7816-3 SIM card specification, the I/O channel is bi-directional open drain,

while the CLK and RST channels are uni-directional push / pull. Therefore, the FXLP4555 is designed with two uni-directional translators for CLK and RST and one hybrid auto-directional translator (with internal pull-up resistors) for the I/O channel.

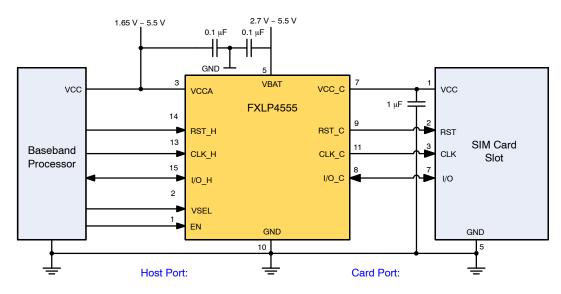


Figure 12. FXLP4555 SIM Card Controller / Translator

Auto-Direction BUS Hold Applications

The auto-direction BUS hold architecture is applicable to push-pull applications, such as SPI. The auto-direction bus hold architecture is not recommended for open-drain environments using pull-up resistors.

SPI Application

Figure 13 is a block diagram of the FXLA104 SPI translator. SPI is a 4-bit, non-open-drain, chip-to-chip

communication protocol, typically running 5 MHz – 20 MHz. In comparison to I²C and SMUS, SPI goes much faster, but uses more pins and requires dedicated slave select (SS) pins for each slave. I²C and SMBUS run much slower (400 kHz), but use only two pins and can daisy-chain multiple slaves as well as multiple masters.

Depending on the V_{CC} combination, the FXLA104 level shifts SPI applications (1.1 V - 3.6 V) from 20 MHz up to 70 MHz.

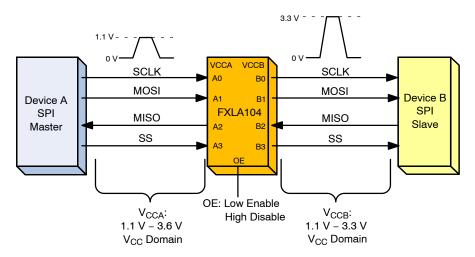


Figure 13. FXLA104 SPI Translator

Table 2. TRANSLATOR ARCHITECTURES CHARACTERISTICS

Item	Feature	Uni-Directional	Bi-Direction Direction Pin	Auto-Direction Bus Hold	Auto-Direction Hybrid
1	Direction Pin	N/A	Yes	No	No
2	Open Drain	Yes	Yes	No	Yes
3	Push/Pull	Yes	Yes	Yes	Yes
4	Static Drive	Strong (mA)	Strong (mA)	Weak (μA)	Weak (μA)
5	Dynamic Drive	Strong (mA)	Strong (mA)	Strong (mA)	Strong (mA)
6	Direction Change Time	N/A	Fast (4 ns Typ.)	Slow (40 ns Typ.)	Slow (40 ns Typ.)

AN-9740/D

Table 3. onsemi TRANSLATOR PORTFOLIO

Architecture	Part Number	Channels	Voltage Range (V)	DC Drive
Uni-directional	FXLP34	1 (A → B)	0.9 to 3.6	2.6 mA
	NL3V1T34	1 (A → B)	0.9 to 3.6	24 mA
	NL3V1T244	1 (A → B)	0.9 to 3.6	24 mA
	NL3V1T240	1 (A → B)	0.9 to 3.6	24 mA
	NL3V2T244	2 (A → B)	0.9 to 3.6	24 mA
	NL3V2T240	2 (A → B)	0.9 to 3.6	24 mA
1	NL3V4T244	4 (A → B)	0.9 to 3.6	24 mA
	NL3V4T240	4 (A → B)	0.9 to 3.6	24 mA
	NL3V4T3144	3 (A → B) 1 (B → A)	0.9 to 3.6	24 mA
	FXL5T244	5 (A → B)	1.1 to 3.6	24 mA
	NL3V8T244	8 (A → B)	0.9 to 3.6	24 mA
	NL3V8T240	8 (A → B)	0.9 to 3.6	24 mA
Bi-directional	FXLH1T45	1	1.1 to 3.6	24 mA
	FXL2T245	2	1.1 to 3.6	24 mA
	FXL2TD245	2	1.1 to 3.6	24 mA
	FXL4T245	4	1.1 to 3.6	24 mA
	FXL4TD245	4	1.1 to 3.6	24 mA
	FXL4245	8	1.1 to 3.6	24 mA
	FXLH42245	8	1.1 to 3.6	24 mA
Autosense Bus Hold	FXLA101	1	1.1 to 3.6	100 μΑ
	FXLA102	2	1.1 to 3.6	100 μΑ
	FXLA104	4	1.1 to 3.6	100 μΑ
	FXLA0104	4	1.1 to 3.6	100 μΑ
	FXLSD106	6	1.1 to 3.6	20 μΑ
	FXLA108	8	1.1 to 3.6	100 μΑ
	FXMA108	8	1.65 to 5.5	100 μΑ
Autosense Push-Pull	NL3X5004	4	0.9 to 3.6	20 μΑ
Autosense Hybrid	FXMA2102	2	1.65 to 5.5	n/a
	FXMAR2102	2	1.65 to 5.5	n/a
	NL5X4002	2	1.65 to 5.5	n/a
	FXMA2104	4	1.65 to 5.5	n/a
	FXMAR2104	4	1.65 to 5.5	n/a
Basic Autosense Switch	NLA9306	2	1.0 to 5.5	n/a
	FXWA9306	2	1.0 to 5.5	n/a
SIM Card Translator	FXLP4555	3	2.7 to 5.5	20 μΑ

AN-9740/D

REVISION HISTORY

Revision	Description of Changes	Date
3	Hyperlinks added to 8 Part Numbers and NL5X4E02 Part Number row removed in Table 3 (p.8)	9/16/2025

This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sale