

NCV78902/NCV78964 Booster Current Sensing over MOSFET

AND90357/D

Introduction

NCV78902 and NCV78964 devices incorporate current mode voltage booster. In traditional approach, booster inductor current is sensed by means of shunt resistor (Figure 1). Generation 4+ LED drivers NCV78902 (2 phase Booster and SEPIC controller) and NCV78964 (2 phase Booster controller and 2 channel Buck) support, besides traditional approach, also booster inductor current sensing over MOSFET's RDS_{ON} (Figure 2). This provides the possibility to avoid booster sensing resistor in the application and save its cost and area for each of the phases and thus gain advantage over traditional system. By omitting the shunt resistor, the switching loop also becomes smaller and EMC performance is improved.

To support this feature, positive current sensing pins IBSTSNSxP had been made capable of handling high

voltage. Newly, SPI settings programmability must reflect higher variation of MOSFET's RDS_{ON} value. The range of the current limit register BSTx_VLIM_THR[7:0] is significantly extended and can be set in fine steps. Also the voltage from COMP pin can be internally divided in a few fine steps with help of BST_COMP_DIV[2:0] register.

MOSFET's RDS_{ON} has by nature strong temperature dependency (Figure 5), directly affecting booster current limitation level and stability/reaction of the whole system, and it is desirable to compensate this effect in the application. This is possible thanks to the above-mentioned parameters and registers.

This application note further provides guideline on how to handle this compensation with specific NTMFS6H858NL MOSFET which is by default used on evaluation kit boards for generation 4+ LED drivers.

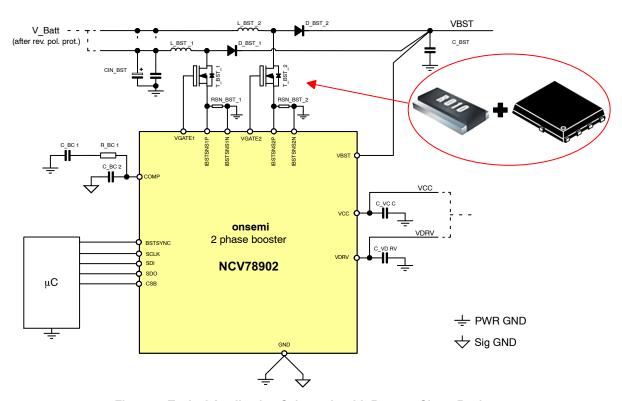


Figure 1. Typical Application Schematic with Booster Shunt Resistor

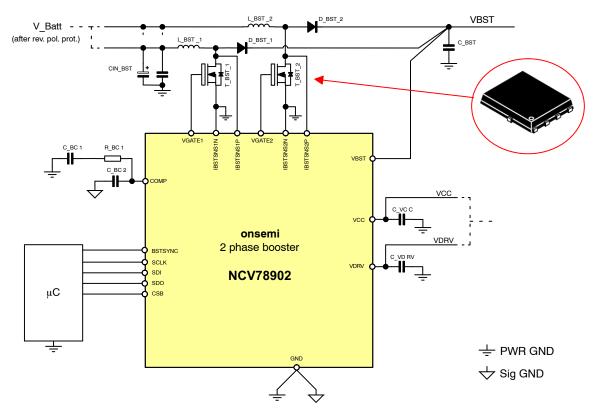


Figure 2. Typical Application Schematic with Current Sensing on Booster MOSFETs

Booster MOSFET Selection and Parameters

For generation 4+ LED drivers the logic level N-channel MOSFETs must be selected as the maximum available voltage for Gate switching on these devices is 5 V.

Suitable MOSFET should have voltage rating with some margin above the used booster voltage in the application. As generation 4+ LED drivers allow to operate at booster voltage maximum 62 – 65 V, the 80 V MOSFET could be considered as universal choice.

MOSFET's power rating should support the worst-case application conditions (maximum power, low battery voltage, ripple over the Booster inductor).

Another point to consider is selection of the MOSFET with good tradeoff between RDS_{ON} (affects conduction losses) and total gate charge (affects switching losses) depending on the operating conditions (frequency).

NTMFS6H858NL

Considering the above-mentioned selection criteria, the NTMFS6H858NL has been selected as default MOSFET for evaluation kit boards for generation 4+ LED drivers. Its parameters, specifically RDS_{ON} and its dependency on temperature, are illustrated on Figure 3 and Figure 4.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
80 V	25 mΩ @ 4.5 V	30 A

Figure 3. NTMFS6H858NL MOSFET's PARAMETERS

Drain-to- Resis		R _{DS(ON)}				
Test Condition		Min	Тур	Max	Unit	
V _{GS} = 4.5 V	I _D = 5 A	-	20	25	mΩ	

Figure 4. NTMFS6H858NL MOSFET's ON-RESISTANCE

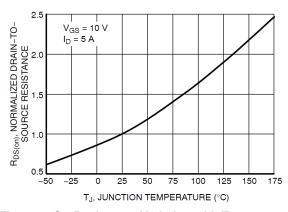


Figure 5. On-Resistance Variation with Temperature

From Figure 5 it is evident that RDS_{ON} changes over temperature range more than factor 2. When current sensing over MOSFET's RDS_{ON} is used, this variation directly affects the current limitation level and stability loop of the booster regulation, and it is desirable to compensate for these effects.

Booster Current Limitation Protection

Overcurrent protection clamps the maximum physical current that can flow in the booster input circuit while the MOSFET is driven. Overcurrent protection is active each PWM cycle and switches off the MOSFET's gate when voltage sensed on positive current sensing pin IBSTSNSxP reaches its maximum threshold defined by the BSTx_VLIM_THR[7:0] register. Therefore, the maximum allowed peak current will be defined, in case of sensing over booster MOSFET, by the ratio:

$$IPEAK_MAX = \frac{V(BSTx_VLIM_THR[7:0])}{RDSon}$$
 (eq. 1)

Table 1. SETTING FOR OVER-CURRENT COMPARATOR

Conditions	Min	Тур	Max	Unit
BST_VLIM_THR[7:0] = 255	570	600	630	mV
BST_VLIM_THR[7:0] = 0	-3	2	7	mV
Linear increase, 8 bits	_	2.35	-	mV

Current Limitation Measurement

The impact of varying MOSFET's RDSON on current limitation without any compensation in temperature range $25\,^{\circ}\text{C}$ to $125\,^{\circ}\text{C}$ is depicted on Figure 6. With the temperature increase of $100\,^{\circ}\text{C}$, the current limit drops by more than 30%. In the application it is necessary to compensate for this effect.

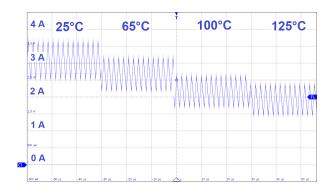


Figure 6. Current Limitation Variation with Temperature

Stability Considerations

COMP pin reference voltage is fed to the current comparator via a divider (ratio of which can be set by register BSTx_COMP_DIV[2:0] for each phase independently). The comparator compares this reference voltage with voltage VSENSE sensed on sensing pins IBSTSNSxP and IBSTSNSxN.

Table 2. DIVISION FACTOR OF VCOMP VOLTAGE TOWARDS THE CURRENT COMPARATOR INPUT

Conditions	Min	Тур	Max	Unit
BST_COMP_DIV[2:0] = 0	1.95	2	2.03	-
BST_COMP_DIV[2:0] = 1	2.76	2.8	2.87	-
BST_COMP_DIV[2:0] = 2	3.90	4	4.06	-
BST_COMP_DIV[2:0] = 3	5.50	5.7	5.74	-
BST_COMP_DIV[2:0] = 4	7.80	8	8.12	-
BST_COMP_DIV[2:0] = 5	11.04	11.3	11.48	_
BST_COMP_DIV[2:0] = 6	15.58	16	16.22	-
BST_COMP_DIV[2:0] = 7	21.07	22.6	22.98	-

Please note that for the selection of the COMP_DIV factor in the application, besides the stability, also available regulation voltage room on COMP pin should be considered. In other words, if too high COMP_DIV factor is selected and together with other application demands (high current from the booster phase e.g. at lower battery conditions, high slope control settings), it could happen that voltage at COMP pin becomes clamped and available current through the booster phase becomes limited by this mechanism.

Stability Simulation and Measurement

For Stability considerations the following typical Booster setup was selected:

VIN = 13 V; Vboost = 50 V; Load = 50 W; Fsw = 400 kHz; LBoost = 10 μ H; Rsense = NTMFS6H858NL; Ccer = 22 μ F; GM = 30 μ S; Se = 360 k; COMP pin division factor = 4 (BST_COMP_DIV[2:0] = 2); COMP network = {R = 3.3 kΩ; C1 = 47 nF; C2 = 470 pF;}

Table 3. IMPACT ON THE STABILITY WITHOUT COMPENSATION OF NTMFS6H858NL RDSon

Temp. [°C]	NTMFS6H858NL RDS _{ON} Typ [m Ω]	Cross over Frequency [Hz]	Phase Margin [°]		
-50	12	3924	63		
-25	14	3429	66		
0	16	3040	68		
25 20		2488	69		
50	24	2123	68		
85	30	1763	65		
125	38	1466	61		
150	44	1315	59		
175	50	1200	56		

In this specific system setting, the phase margin is acceptable over full temperature range even without application of any compensation. Only dynamic performance is slightly affected. It is inversely proportional to RDS_{ON} and can be compensated by COMP pin division factor.

MOSFET Temperature Measurement

Ideally, NTC thermistor should be placed on the PCB close to the MOSFET to ensure reliable information about its temperature. If temperature sensor position is far from MOSFET, some temperature offset can be introduced and its compensation in SW should be considered.

In fact, NCV78902/NCV78964 device junction temperature (T_J) is continuously available through VTEMP ADC measurement, however it needs to be taken into account that in case of NCV78964 there are Buck channels inside dissipating big power and in case of NCV78902 there is no exposed pad connection to the PCB, so temperatures may be very different from that of MOSFETs.

Compensation Guideline

Based on the fact that the temperature in the system changes slowly and considering that the temperature of the MOSFETs can be only roughly estimated, general approach for compensation should be such that exaggerated reaction and oscillations are not induced. Our proposal is to perform register adjustment e.g. each 100 ms or slower.

From stability point of view, also taking into account granularity of BST_COMP_DIV register, it makes sense to compensate the effect of the changing RDS_{ON} only in a few discrete steps, our proposal would be to use 4 ranges as indicated in Table 4, where COMP pin division factor is compensating RDS_{ON} in inversely proportional way.

In the contrary, the current limitation can be compensated by means of BST_VLIM_THR[7:0] register in finer steps. The following table brings specific examples for both compensations.

Table 4. EXAMPLE OF CURRENT LIMITATION AND STABILITY COMPENSATION

Temperature Range [°C] for Stability Compensation	-50 - 0		0 – 50		50 – 125		125 – 150					
Temperature [°C] for Current Limitation Settings	-50	-25	0	0	25	50	50	85	125	125	150	175
NTMFS6H858NL RDSon Typ [mΩ] Read from Graph		14	16	16	20	24	24	30	38	38	44	50
BSTx_VLIM_THR [mV] for Ipeak = 10 A	120	140	160	160	200	240	240	300	380	380	440	500
BST_VLIM_THR[7:0] Reg.	50	58	67	67	84	101	101	127	161	161	186	212
Current Limitation Ipeak [A] after Compensation	10	10	10	10	10	10	10	10	10	10	10	10
COMP Pin Division Factor [–]* Applied		5.7			4 2.8			2				
BSTx_COMP_DIV[2:0] Reg.	3 2			1			0					
Cross over Frequency [kHz] after Compensation	2862	2496	2224	3040	2490	2129	2909	2387	1954	2606	2293	2058
Phase Margin [°] after Compensation	69	67	65	70	67	64	69	66	62	67	65	63

Cannot be set in finer steps

The example of equation for current limit compensation is shown below. Please note that the equation for MOSFET's RDS_{ON} dependency on temperature should be adjusted to the specific MOSFET, intended temperature range of use and another application requirements.

In most cases the quadratic equation can provide the best possible approximation in exchange for a need of more computing power:

$$BSTx_VLIM_THR[7:0] \ register = \frac{255}{600-2} \cdot \left(\left(I_{PEAK} \cdot \left(0.0004 \cdot t^2 + 0.12 \cdot t + 16.71 \right) \right) - 2 \right) \tag{eq. 2}$$

where

I_{PEAK} is requested booster current limitation level, T is actual temperature of the MOSFET.

Quadratic equation coefficients are estimated from the NTMFS6H858NL RDS_{ON} figure.

Another approach can be simple linear approximation in certain temperature range. For the specific MOSFET NTMFS6H858NL, the MOSFET's RDS_{ON} can be linearly interpolated between 25 °C and 175 °C, providing good

precision for temperatures above 25 °C. For temperatures below 25 °C the level can be kept constant, not introducing excessive error.

$$BST_VLIM_THR[7:0] \ register = \frac{255}{600-2} \cdot \left(\left(I_{PEAK} \cdot \left(RDS_{ON25} + (t-25 \, ^{\circ}C) \frac{RDS_{ON175} - RDS_{ON25}}{175-25} \right) \right) - 2 \right) \quad \text{(eq. 3)}$$

where

I_{PEAK} is requested booster current limitation level, T is actual temperature of the MOSFET, RDS_{ON25} is MOSFET's RDS_{ON} at 25 °C,

RDS_{ON25} is MOSFET's RDS_{ON} at 25 °C, RDS_{ON175} is MOSFET's RDS_{ON} at 175 °C.

AND90357/D

Implementation in Code for MOSFET NTMFS6H858NL

```
#include <stdint.h>
#include <math.h>
// Returns MOSFET's temperature in degrees Celcius, it is typically sensed by NTC thermistor and converted by ADC
float readMOSFETtemperature() {
     // ...
// Calculates NTMFS6H858NL MOSFET's RDSon for given temperature
float calcMOSFETResistance(float temperature) {
      return (0.0004*pow(temperature, 2) + 0.12*temperature + 16.708);
// Calculates and sets BST1 VLIM THR[7:0] and BST2 VLIM THR[7:0] registers according to actual MOSFET temperature
void setBoostCurrentLimitThr() {
      regVal = (int)round((Ipeak*calcMOSFETResistance(MOSFETtemp)-2)/2.35);
      \tt setNCV78902 register("[BST1\_VLIM\_THR]", regVal); // Saves calculated value into the register map setNCV78902 register("[BST2\_VLIM\_THR]", regVal); // Saves calculated value into the register map setNCV78902 register("[BST2\_VLIM\_THR]", regVal); // Saves calculated value into the register map setNCV78902 register("[BST2\_VLIM\_THR]", regVal); // Saves calculated value into the register map setNCV78902 register("[BST2\_VLIM\_THR]", regVal); // Saves calculated value into the register map setNCV78902 register("[BST2\_VLIM\_THR]", regVal); // Saves calculated value into the register map setNCV78902 register("[BST2\_VLIM\_THR]", regVal); // Saves calculated value into the register map setNCV78902 register("[BST2\_VLIM\_THR]", regVal); // Saves calculated value into the register map setNCV78902 register("[BST2\_VLIM\_THR]", regVal); // Saves calculated value into the register map setNCV78902 register("[BST2\_VLIM\_THR]", regVal); // Saves calculated value into the register map setNCV78902 register("[BST2\_VLIM\_THR]", regVal); // Saves calculated value into the register map setNCV78902 register("[BST2\_VLIM\_THR]", regVal); // Saves calculated value into the register map setNCV78902 register("[BST2\_VLIM\_THR]", regVal); // Saves calculated value into the register map setNCV78902 register("[BST2\_VLIM\_THR]", regVal); // Saves calculated value into the register map setNCV78902 register map setNCV789
// Sets the default COMP pin division factor at 25 degC with room for its temperature compensation
void setMidpointCOMPDiv()
      float MOSFETResistance(25); // Calculates MOSFET's RDSon at 25 degC
      midpCompDiv = (int)round(4.0/(MOSFETResistance25/10.0)); // Sets midpoint according to specific application needs
           This example considers default settings of midpCompDiv = 4 for 10 mOhm sensing resistor
       // and scales it according to the selected MOSFET's RDSon
      if (midpCompDiv > 6) { // Checks midpoint value and sets its high value limit
             midpCompDiv = 6;
      if(midpCompDiv < 2) { // Checks midpoint value and sets its low value limit
              midpCompDiv = 2;
}
// Calculates and sets BST1_COMP_DIV[2:0] and BST2_COMP_DIV[2:0] registers according to actual MOSFET temperature
void setCOMPDivisionFactor() {
      quint8 reqVal;
      if(MOSFETtemp > 125.0) { // Checks MOSFET's temperature to set BSTx COMP DIV value
              regVal = midpCompDiv-2;
      else if(MOSFETtemp > 50.0 && MOSFETtemp <= 125.0){ // Checks MOSFET's temperature to set BSTx_COMP_DIV value
             regVal = midpCompDiv-1;
      else if (MOSFETtemp > 0.0 && MOSFETtemp <= 50.0) { // Checks MOSFET's temperature to set BSTx COMP DIV value
             regVal = midpCompDiv;
              regVal = midpCompDiv+1;
       setNCV78902register("[BST1 COMP DIV]", regVal); // Saves calculated value into the register map
       setNCV78902register("[BST2_COMP_DIV]", regVal); // Saves calculated value into the register map
// Example of compensation of Booster current limitation and COMP pin division factor
float Ipeak = 10.0; //Requested booster current limitation level = 10 A
float MOSFETtemp;
setMidpointCOMPDiv();
// ISR for interrupt (100ms timer)
ISR(AUTOTUNE_INT_vect) {
   MOSFETtemp = readMOSFETtemperature();
      setBoostCurrentLimitThr();
       setCOMPDivisionFactor();
// ...
```

AND90357/D

Conclusion

Sensing of the current on MOSFET's RDS_{ON}, compared to traditional approach with dedicated sensing resistor, brings besides many advantages also new challenges. Strong dependency of MOSFET's RDS_{ON} on temperature directly affects booster current limitation level and stability/reaction of the whole system. So it is necessary to measure and estimate the temperature and compensate the behavior of the system accordingly. This application note summarizes all related aspects and introduces a suitable approach for such compensation and its effect on the system's behavior.

Without compensation, the system would be naturally stable with negative feedback because with increasing

temperature the maximum input current decreases and in this way the overheating of the system is prevented. But the impact is also that total available power can be limited and requested output voltage and current not reached when regulated input current hits the decreased limitation threshold. So this guideline shows how to work with current limitation threshold depending on the temperature. For a correctly designed system from a stability point of view, the effect of the temperature is almost negligible, and only dynamic performance would be slightly affected as presented in this application note.

AND90357/D

REVISION HISTORY

Revision	Description of Changes	Date		
0	Initial Document released.	7/8/2025		

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales