
SN54AHCT14 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

- Inputs Are TTL-Voltage Compatible
- EPIC[™] (Enhanced-Performance Implanted CMOS) Process
- High Latch-Up Immunity Exceeds 250 mA Per JEDEC Standard JESD-17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), Thin Shrink Small-Outline (PW), and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

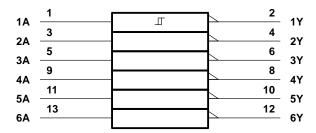
description

The 'AHCT14 contain six independent inverters. These devices perform the Boolean function $Y = \overline{A}$.

Each circuit functions as an independent inverter, but because of the Schmitt action, the inverters have different input threshold levels for positive-going (V_{T+}) and for negative-going (V_{T-}) signals.

The SN54AHCT14 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74AHCT14 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each inverter)


INPUT A	OUTPUT Y
Н	L
L	Н

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.

ADVANCE INFORMATION

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, DB, J, N, PW, and W packages.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1)	
Output voltage range, VO (see Note 1)	\dots -0.5 V to V _{CC} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	–20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	–20 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±25 mA
Continuous current through V _{CC} or GND	±50 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 2): D package	1.25 W
DB or PW pack	kage 0.5 W
N package	1.1 W
Storage temperature range, T _{stg}	–65°C to 150°C

^{\$} Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

recommended operating conditions (see Note 3)

		SN54AHCT14		SN74Al	HCT14	UNIT
		MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2.1		2.1		V
V _{IL}	Low-level input voltage		0.5		0.5	V
٧ _I	Input voltage	0	5.5	0	5.5	V
٧o	Output voltage	0	Vcc	0	VCC	V
ЮН	High-level output current		-8		-8	mA
loL	Low-level output current		8		8	mA
Δt/Δν	Input transition rise or fall rate		20		20	ns/V
TA	Operating free-air temperature	-55	125	-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

^{2.} The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils, except for the N package, which has a trace length of zero.

ADVANCE INFORMATION

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS V		T,	չ = 25°C	;	SN54AI	HCT14	SN74AI	HCT14	UNIT
FARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	MIN	MAX	MIN	MAX	ONIT
V _{T+} Positive-going input		4.5 V			3.15		3.15		3.15	V
threshold voltage		5.5 V			3.85		3.85		3.85	V
V _T _ Negative-going input		4.5 V	1.35			1.35		1.35		>
threshold voltage		5.5 V	1.65			1.65		1.65		V
ΔV_{T}		4.5 V	0.4		1.4	0.4	1.4	0.4	1.4	V
Hysteresis (V _{T+} – V _{T-})		5.5 V	0.5		1.6	0.5	1.6	0.5	1.6	
Vou	I _{OH} = -50 μA	4.5 V	4.4	4.5		4.4		4.4		٧
VOH	$I_{OH} = -8 \text{ mA}$	4.5 V	3.94			3.8		3.8		V
Voi	I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1	V
VoL	I _{OL} = 8 mA	4.5 V			0.36		0.44		0.44	V
lį	V _I = V _{CC} or GND	5.5 V			±0.1		±1		±1	μΑ
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			2		20		20	μΑ
C _i	$V_I = V_{CC}$ or GND	5 V		2	10				10	pF

switching characteristics over recommended operating free-air temperature range V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER					SN54AHCT14																					
	FROM (INPUT)	TO (OUTPUT)	TO LOAD CAPACITANCE	T _A = 25°C			MIN	MAX	UNIT																	
	(1141 01)	(0011 01)		MIN	TYP	MAX	IVIIIN	WAA																		
^t PLH*	А	Y	C: _ 15 pE		4	7	1	8	20																	
tPHL*	A		'	'	'	ľ	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	1	τ CL = 15 pr	C _L = 15 pF		4	7	1	8
t _{PLH}	^	Y	C: - 50 pE		5.5	8	1	9	nc																	
t _{PHL}	A		C _L = 50 pF		5.5	8	1	9	ns																	

^{*} On products compliant to MIL-PRF-38535, this parameter is ensured but not production tested.

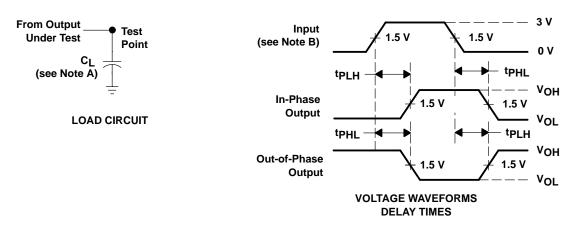
switching characteristics over recommended operating free-air temperature range V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER		TO LOAD CAPACITANCE							
	FROM (INPUT)		CAPACITANCE	T _A = 25°C			MIN	MAX	UNIT
	(1011 01)	(0011 01)		MIN	TYP	MAX	IVIIIN	WAX	
^t PLH	^	Y	C: _ 15 pE		4	7	1	8	20
t _{PHL}	A		$C_L = 15 pF$		4	7	1	8	ns
^t PLH	А	~	C _I = 50 pF		5.5	8	1	9	ne
tpHL	Α	ſ	OL = 50 pr		5.5	8	1	9	ns

SN54AHCT14, SN74AHCT14 HEX SCHMITT-TRIGGER INVERTERS

SCLS246D - OCTOBER 1995 - REVISED NOVEMBER 1996

noise characteristics, V_{CC} = 5 V, C_L = 50 pF, T_A = 25°C (see Note 4)


	PARAMETER		SN74AHCT14				
			TYP	MAX	UNIT		
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.9		V		
V _{OL} (V)	Quiet output, minimum dynamic V _{OL}		-0.7		V		
VOH(V)	Quiet output, minimum dynamic VOH		4.3		V		
V _{IH(D)}	High-level dynamic input voltage	2.1			V		
V _{IL(D)}	Low-level dynamic input voltage			0.5	V		

NOTE 4: Characteristics are determined during product characterization and ensured by design for surface-mount packages only.

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER		TEST CO	NDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load,	f = 1 MHz	12	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f = 3 \text{ ns}$, $t_f = 3 \text{ ns}$.
- C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated