e

ROHS COMPLIANT

HALOGEN

FREE

GREEN (5-2008)

Vishay Semiconductors

High Accuracy Ambient Light Sensor With I²C Interface

LINKS TO ADDITIONAL RESOURCES

DESCRIPTION

VEML4031X00 is a high accuracy ambient light digital 16-bit resolution sensor in a miniature opaque 4.38 mm x 1.45 mm package. It includes a high sensitive photodiode, a low noise amplifier, a 16-bit A/D converter and supports an easy to use l^2C bus communication interface and additional interrupt feature.

Pin FMEA is provided by request; supports functional safety integration at customer level.

FEATURES

- · Package type: surface-mount
- Dimensions (L x W x H in mm): 4.38 x 1.45 x 0.6
- AEC-Q100 qualified
- Integrated modules: ambient light sensor (ALS)
- Supply voltage range V_{DD}: 2.5 V to 3.6 V
- Communication via I²C interface
- Floor life: 4 weeks, MSL 2a, according to J-STD-020
- Low shut down current consumption: typ. 0.5 μA
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

Ambient light sensor in automotive for

- Display backlight controls
- Infotainment systems
- Rear view mirror dimming
- Interior lighting control systems
- <u>Head-up displays</u>

PRODUCT SUMMARY											
PART NUMBER	OPERATING VOLTAGE RANGE (V)	I ² C BUS VOLTAGE RANGE (V)	AMBIENT LIGHT RANGE (lx)	AMBIENT LIGHT RESOLUTION (Ix)	OUTPUT CODE	ADC RESOLUTION PROXIMITY / AMBIENT LIGHT					
VEML4031X00	2.5 to 3.6	1.7 to 3.6	0 to 172 000	0.0026	16 bit, I ² C	- / 16 bit					

ORDERING INFORMATION							
ORDERING CODE	PACKAGING	VOLUME ⁽¹⁾					
VEML4031X00	Tape and reel	MOQ: 4500					
VEML40311X00	Tape and reel	MOQ: 4500					

Note

⁽¹⁾ MOQ: minimum order quantity

SLAVE ADDRESS OPTIONS						
ORDERING CODE	SLAVE ADDRESS (7 bit)					
VEML4031X00	0x29					
VEML40311X00	0x10					

1

For technical questions, contact: <u>sensorstechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

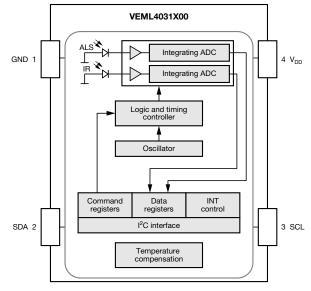
ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)										
PARAMETER	TEST CONDITION	SYMBOL	MIN.	MAX.	UNIT					
Supply voltage		V _{DD}	0	3.6	V					
Operation temperature range		T _{amb}	-40	+110	°C					
Storage temperature range		T _{stg}	-40	+110	°C					
Total power dissipation	T _{amb} ≤ 25 °C	P _{tot}	-	50	mW					
Junction temperature		Tj	-	+110	°C					

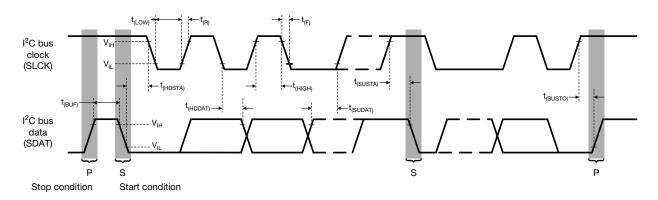
BASIC CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)											
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT					
Supply voltage		V _{DD}	2.5	3.3	3.6	V					
	Shutdown state ⁽¹⁾ ; V _{DD} = V _{BUS}		-	0.5	-						
Supply ourrent	Shutdown state ⁽¹⁾ ; $V_{DD} = V_{BUS} = 3.0 \text{ V}$		-	-	1.2						
Supply current	Shutdown state ⁽¹⁾ ; $V_{DD} = 3.6 \text{ V}$, $V_{BUS} = 1.7 \text{ V}$	I _{DD}	-	3.1	-	μA					
	Active state; V _{DD} = 3.3 V		-	280	3.6 - 1.2 - 400 3.6 3.6 0.3 x V _{BUS} 0.2 x V _{BUS} - -						
I ² C clock rate range		f _{SCL}	10	-	400	kHz					
	$V_{BUS} = V_{DD}$	V _{ih}	$0.7 \mathrm{x} \mathrm{V}_{\mathrm{BUS}}$	-	3.6	V					
I ² C bus input H-level range	V _{BUS} ≠ V _{DD}	V _{ih}	0.85 x V _{BUS}	-	3.6	V					
I ² C bus input L-level range	$V_{BUS} = V_{DD}$	V _{il}	-0.3	-	$0.3 \text{ x V}_{\text{BUS}}$	V					
-C bus input E-level range	V _{BUS} ≠ V _{DD}	V _{il}	-0.3	-	$0.2 \text{ x V}_{\text{BUS}}$	V					
Digital current out (low, current sink)		I _{ol}	3	-	-	mA					
Digital resolution (LSB count) ⁽²⁾	With ALS_GAIN = x 2, ALS_IT = 400 ms, ALS_PDDIV = 4/4 PD		-	0.0026	-	lx/step					
Detectable maximum illuminance	With ALS_GAIN = x 0.5, ALS_IT = 6.25 ms, ALS_PDDIV = 1/4 PD	E _{V max.}	-	172 000	-	lx					
Dark offset ⁽²⁾	With ALS_GAIN = x 2, ALS_IT = 200 ms,	ALS	-	4	-	step					
	ALS_PDDIV = 4/4 PD	IR	-	4	-	Step					

Notes

 $^{(1)}$ Light conditions: dark $^{(2)}$ Light conditions: E_V = 100 lx with 4300K white LED

CIRCUIT BLOCK DIAGRAM




Fig. 1 - Block Diagram

I ² C TIMING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)											
PARAMETER	SYMBOL	STANDARD MODE ⁽¹⁾		FAST N	UNIT						
PARAMETER	STIVIDOL	MIN.	MAX.	MIN.	MAX.						
Clock frequency	f _(SMBCLK)	10	100	10	400	kHz					
Bus free time between start and stop condition	t _(BUF)	4.7	-	1.3	-	μs					
Hold time after (repeated) start condition; after this period, the first clock is generated	t _(HDSTA)	4.0	-	0.6	-	μs					
Repeated start condition setup time	t _(SUSTA)	4.7	-	0.6	-	μs					
Stop condition setup time	t _(SUSTO)	4.0	-	0.6	-	μs					
Data hold time	t _(HDDAT)	0	3450	0	900	ns					
Data setup time	t _(SUDAT)	250	-	100	-	ns					
I ² C clock (SCK) low period	t _(LOW)	4.7	-	1.3	-	μs					
I ² C clock (SCK) high period	t _(HIGH)	4.0	-	0.6	-	μs					
Detect clock / data low timeout	t _(TIMEOUT)	25	35	-	-	ms					
Clock / data fall time	t _(F)	-	300	-	300	ns					
Clock / data rise time	t _(R)	-	1000	-	300	ns					

Note

⁽¹⁾ Data based on standard I²C protocol requirement, not tested in production

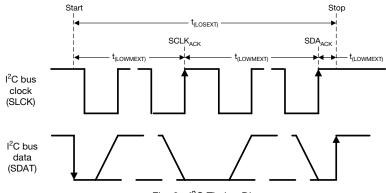


Fig. 2 - I²C Timing Diagram

PARAMETER TIMING INFORMATION

www.vishay.com

VISHAY

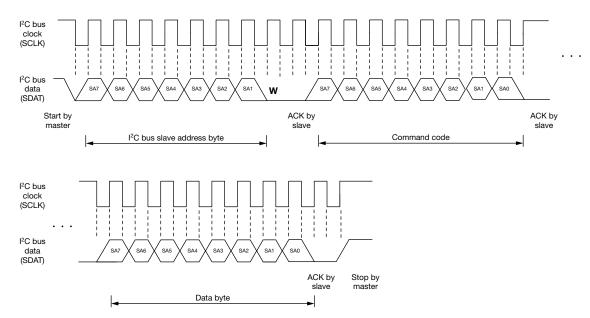


Fig. 3 - I²C Bus Timing for Sending Word Command Format

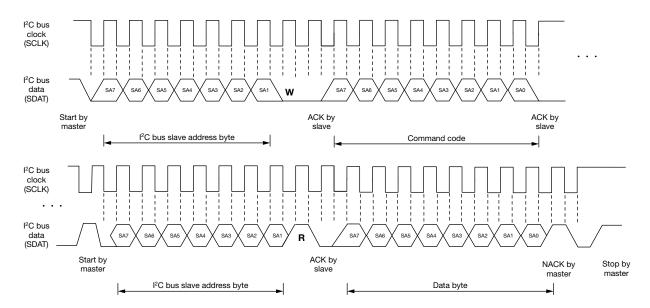


Fig. 4 - I²C Bus Timing for Receive Word Command Format

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

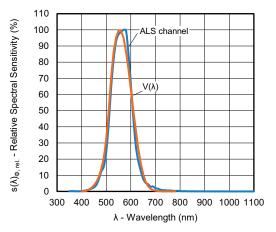


Fig. 5 - Relative Spectral Sensitivity ALS Channel vs. Wavelength

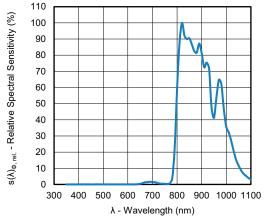


Fig. 6 - Relative Spectral Sensitivity IR Channel vs. Wavelength

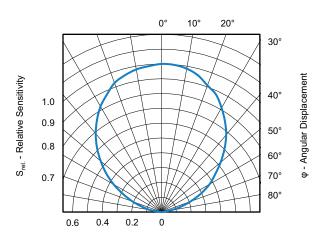


Fig. 7 - Relative Sensitivity vs. Angular Displacement

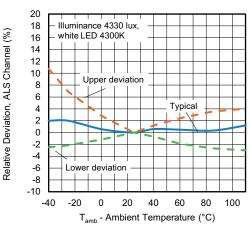


Fig. 8 - Relative Deviation ALS Channel vs. Ambient Temperature (at lux levels lower than ~200 lux,dark current effects should be taken into account)

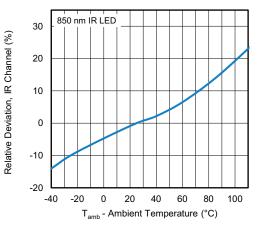
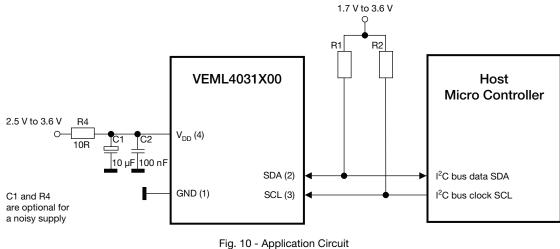


Fig. 9 - Relative Deviation IR Channel vs. Ambient Temperature

Rev. 1.1, 12-Mar-2025


5

For technical questions, contact: <u>sensorstechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

APPLICATION INFORMATION

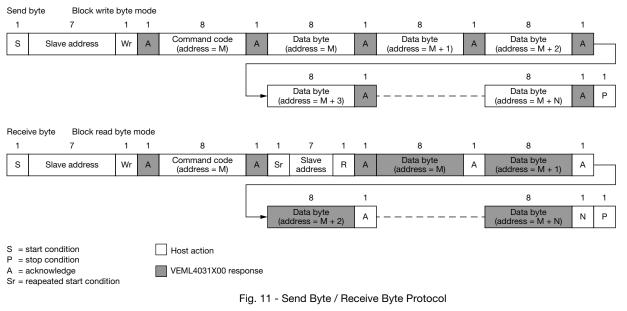
1. Application Circuit

(x) = Pin Number

Notes

• The interrupt pin is an open drain output. Proposed values for the pull-up resistors should be > 1 k Ω , e.g. 2.2 k Ω to 4.7 k Ω for the R1 and R2 (at SDA and SCL) and 10 k Ω to 100 k Ω for R3 (at interrupt).

Normally just one decoupling capacitor is needed. This should be \geq 100 nF and placed close to the V_{DD} pin.


For detailed description about set-up and use of the interrupt as well as more application related information see AN: "Designing VEML4031X00 into an Application"

2. I²C Interface

The VEML4031X00 has eighteen register addresses responsible for operation control, parameter setup and result buffering. All registers are accessible via I²C communication. Fig. 9 shows the basic I²C communication with VEML4031X00.

The built in I²C interface is compatible with I²C modes "standard" and "fast": 10 kHz to 400 kHz.

Please refer to the I²C specification from NXP for details.

REGISTER INFORMATION

Device Address

The VEML4031X00 is available in two different pre-configured slave addresses. For one version the predefined 7 bit l^2 C bus address is set to 0101001 = 0x29. The least significant bit (LSB) defines read or write mode. Accordingly the bus address is set to 0101 0010 = 0x52 for write and 0101 0011 = 0x53 for read. The second version comes with predefined 7 bit l^2 C bus address of 0010000 = 0x10, so, here the write address is 0010 0000 = 0x20 for write and 0010 0001 = 0x21 for read.

TABLE 1 - SLAVE ADDRESS TABLE								
ORDERING CODE 7 BIT SLAVE ADDRESS 8 BIT SLAVE ADDRESS								
VEML4031X00	0x29	0x52 (Write)	0x53 (Read)					
VEML40311X00	0x10	0x20 (Write)	0x21 (Read)					

Register Addresses

The VEML4031X00 has eighteen registers, accessible through there respective 8-bit command codes. Note that due to the location of the two shutdown bits (ALS_ON_0 and ALS_ON_1), one in register 0x00 and the other in 0x01,

it is necessary to always write to both registers at once when configuring the device.

Auto-Memorization

The VEML4031X00 stores the last measured ambient data before the device is shutdown, keeping the data accessible.

When VEML4031X00 is in shutdown mode, the host can freely read this data via read command directly.

When VEML4031X00 wakes up, the data will be refreshed once a new measurement is made.

COMMAND CODE	DATA BYTE LOW / HIGH	REGISTER NAME	DEFAULT VALUE	FUNCTION	ACCESS
				Set the integration time	
0x00		ALS_CONF_0	0x01	Measurement mode of the sensor	
0x00	-	ALS_CONF_U	0.001	Enable interupt function of the ALS channel	
				Switch the sensor on / off	
				Switch the sensor on / off	
0x01	-	ALS_CONF_1	0x80	GAIN and photodiode size setting	Write and read
				Interrupt persistance counter	read
0x04	Low	ALS_THDH_L	0x00	ALS channel high threshold window setting (low byte)	
0x05	High	ALS_THDH_H	0x00	ALS channel high threshold window setting (high byte)	
0x06	Low	ALS_THDL_L	0x00	ALS channel low threshold window setting (low byte)	
0x07	High	ALS_THDL_H	0x00	ALS channel low threshold window setting (high byte)	
0x10	Low	ALS_DATA_L	0x00	Low byte of 16-bit ALS channel result data	
0x11	High	ALS_DATA_H	0x00	High byte of 16-bit ALS channel result data	
0x12	Low	IR_DATA_L	0x00	Low byte of 16-bit IR channel result data	
0x13	High	IR_DATA_H	0x00	High byte of 16-bit IR channel result data	Deed only
0x14	Low	VEML4031X00_ID_L	0x01	ID code	Read only
0x15	High	VEML4031X00_ID_H	0x00	ID code]
0x16	Low	INT_FLAG	0x00	Reserved	1
0x17	High	INT_FLAG	0x00	Interrupt and active force mode event flag	1

Notes

• Command code 0x00 default value is 0x01 = device is shutdown

• Command 0x00 and command 0x01 must be executed together, they cannot be executed independently

VEML4031X00

Vishay Semiconductors

TABLE 3 - REGISTER NAME: ALS_CONF_0									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Reserved		ALS_IT		ALS_MODE	ALS_TRIG	ALS_INT	ALS_ON_0		
		COMMAND COD	E			0x00			
BIT N	IAME	FUNC	CTION	BIT	VALUE	DESCR	IPTION		
Rese	erved	Rese	erved	7	0x0 (0b0)	Should be	kept default		
					0x0 (0b000)	3.125 ms	s (default)		
					0x1 (0b001)	6.25	5 ms		
					0x2 (0b010)	12.5	5 ms		
A1 C		Cat the inte	avation time	6:4	0x3 (0b011)	25 ms			
ALS	5_11	Set the integration time		6:4	0x4 (0b100)	50 ms			
					0x5 (0b101)	100 ms			
					0x6 (0b110)	200 ms			
					0x7 (0b111)	400 ms			
ALS N		Set the measure	Set the measurement mode of the sensor		0x0 (0b0)	Auto mode (default)			
ALS_I	NODE	ser			0x1 (0b1)	Active force mode			
			rce mode trigger;	2	0x0 (0b0)	Off (default)			
ALS_	TRIG		this bit will be reset to 0 after the measurement cycle		0x1 (0b1)	Trigger			
AL 9		Enable / disab	le the interrupt	1	0x0 (0b0)	Disable	(default)		
ALS_INT function of the ALS channel		I	0x1 (0b1)	Enable					
			ensor on / off		0x0 (0b0)	Turn on t	he sensor		
ALS_ON_0		be executed tog	ALS_ON_1 must gether to start the isor)	0	0x1 (0b1)	Turn off the ser (def			

Note

• Command Code 0x00 default value is 0x01 = device shutdown

TABLE 4 -	REGISTER N	IAME: ALS_C	ONF_1						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ALS_ON_1	ALS_PDDIV	Reserved	ALS_0	GAIN	ALS_	PERS	ALS_CAL		
		COMMAND CODE	E			0x01	•		
BIT I	NAME	FUNC	TION	BIT	VALUE	DESCF			
			ensor on / off		0x0 (0b0)	Turn on t	he sensor		
ALS_	_ON_1	(ALS_ON_0 and a be executed togo sen	ether to start the	7	0x1 (0b1)		nsor (shutdown) ault)		
		Set the effective	photodiode size	6	0x0 (0b0)	4/4 PI	D used		
ALS_	PDDIV		for the ALS and IR channel		0x1 (0b1)	1/4 PD used			
Res	erved	Reserved		5	0x0 (0b0)	Should be kept default			
		Set the gain of the ALS			0x0 (0b00)	Gain x1			
	O A INI			4.0	0x1 (0b01)	Gain x2			
ALS_	_GAIN			Set the gain of the ALS 4:3		4:3	0x2 (0b10)	Gain x0.66	
					0x3 (0b11)	Gain x0.5			
					0x1 (0b00)	1 time	(default)		
	0500		of consecutive	0.1	0x2 (0b01)	2 times			
ALS_	PERS	threshold cro necessary to tr	rigger interrupt	2:1	0x3 (0b10)	4 ti	mes		
		necessary to trigger interrupt			0x4 (0b11)	8 times			
ALS_CAL Intern		Internal calibration	on after power on	0	0x1 (0b1)		set to "1" er on ready		
			-		0x0 (0b0)	Disable (default)			

TABLE 5 -	TABLE 5 - REGISTER NAME: ALS_THDH											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
	ALS_THDH_L											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
			ALS_THDH_H	1								
COMMAND	BIT NAME	FUNC	TION	BIT	VALUE	DESCR	IPTION					
0x04	ALS_THDH_L	Set the high thr	Set the high threshold interrupt		0 to 65 535		byte					
0x05	ALS_THDH_H	va	lue	7:0	01005555	High	byte					

TABLE 6 -	TABLE 6 - REGISTER NAME: ALS_THDL											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
	ALS_THDL_L											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
			ALS_THDL_H	ł								
COMMAND	BIT NAME	FUNC	CTION	BIT	VALUE	DESCR	IPTION					
0x06	ALS_THDL_L	Set th	Set the low		0 to 65 535		byte					
0x07	ALS_THDL_H	threshold in	terrupt value	7:0	0 10 05 555	High	byte					

TABLE 7 - REGISTER NAME: ALS_DATA										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ALS_DATA_L										
Bit 7	Bit 6	Bit 5 Bit 4		Bit 3	Bit 2	Bit 1	Bit 0			
			ALS_DATA_H	1						
COMMAND	COMMAND BIT NAME FUNCTION BIT VALUE DESCRIPTION									
0x10	ALS_DATA_L	Read the ALS channel		7:0	0 to 65 535	Low byte				
0x11	ALS_DATA_H	outpu	t data	7:0	0.00000000	High byte				

TABLE 8 - REGISTER NAME: IR_DATA										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
IR_DATA_L										
Bit 7	Bit 6	Bit 5 Bit 4		Bit 3	Bit 2	Bit 1	Bit 0			
			IR_DATA_H		•					
COMMAND	COMMAND BIT NAME FUNCTION BIT VALUE DESCRIPTION									
0x12	IR_DATA_L	Read the	IR channel	7:0	0 to 65 535	Low byte				
0x13	IR_DATA_H	outpu	it data	7:0	0 10 05 555	High byte				

TABLE 9 - REGISTER NAME: VEML4031X00_ID										
Bit 7	Bit 6	Bit 5 Bit 4		Bit 3	Bit 2	Bit 1	Bit 0			
VEML4031X00_ID_L										
Bit 7	Bit 6	Bit 5 Bit 4		Bit 3	Bit 2	Bit 1	Bit 0			
VEML4031X00_ID_H										
COMMAND	BIT NAME	FUNCTION		BIT	VALUE	DESCRIPTION				
0x14	VEML4031X00_ID_L			7:0	0x01 (0b00000001)	Should be l	kept default			
0x15	VEML4031X00_ID_H	Read the device ID		7:0	0x00 (0b0000000)	Device with a slave address of 0x29				
0215				7.0	0x10 (0b00010000)	Device with a slave address of 0x10				

TABLE 10 - REGISTER NAME: INT_FLAG										
Bit 7	Bit 6	Bit 5 Bit 4		Bit 3	Bit 2	Bit 1	Bit 0			
Reserved										
Bit 7	Bit 6	Bit 5 Bit 4		Bit 3	Bit 2	Bit 1	Bit 0			
Reserved AF_DATA_READY ALS_IF_L ALS_IF_H Reserved										
COMMAND	BIT NAME	FUNCT	ION	BIT	VALUE	DESCRIPTION				
0x16	Reserved	Reserved		7:0	0x00 (0b0000000)	Should be l	kept default			
	Reserved	Reserved		7:4	0x0 (0b0000)	Should be kept default				
	AF DATA READY	Data ready flag active force mode Low threshold interupt flag High threshold interupt flag		3	0x1 (0b1)	Data ready flag available				
	AL_DATA_NEADT			5	0x0 (0b0)	Data ready flag not available				
0x17	ALS_IF_L			2	0x1 (0b1)	Low threshold crossing interrup event flag for the ALS channel				
0,17					0x0 (0b0)	No low threshold crossing				
	ALS_IF_H			1	0x1 (0b1) High threshold crossing event flag for the ALS					
					0x0 (0b0)	No high threshold crossing				
	Reserved	Reserved		0	0x0 (0b0)	Should be kept default				

CALCULATING THE LUX LEVEL

Command code 0x10 and 0x11 contain the results of the ambient light channel measurement. The value of the ALS channel can be used to calculated the corresponding illumination. Therefore, the 16-bit code needs to be

converted to a decimal value to determine the corresponding lux value. The calculation of the corresponding lux level is dependent on the programmed gain setting and the chosen integration time.

TABLE 1	TABLE 11 - RESOLUTION AND MAXIMUM DETECTION RANGE AT ALS_PDDIV (4/4 PD used)											
	Т	YPICAL RESO	LUTION (lx/cn	t)	MAXIMUM POSSIBLE ILLUMINATION (Ix)							
	ALS_GAIN						ALS_	GAIN				
IT (ms)	x 2	x 1	x 0.66	x 0.5		x 2	x 1	x 0.66	x 0.5			
400	0.0026	0.0051	0.0078	0.0103		168	337	510	673			
200	0.0051	0.0103	0.0156	0.0205		337	673	1020	1346			
100	0.0103	0.0205	0.0311	0.0411		673	1346	2040	2693			
50	0.0205	0.0411	0.0623	0.0822		1346	2693	4080	5385			
25	0.0411	0.0822	0.1245	0.1644		2693	5385	8160	10 771			
12.5	0.0822	0.1644	0.2490	0.3287		5385	10 771	16 319	21 542			
6.25	0.1644	0.3287	0.4980	0.6574		10 771	21 542	32 639	43 083			
3.125	0.3287	0.6574	0.9961	1.3148		(-) (1)	(-) ⁽¹⁾	(-) ⁽¹⁾	(-) ⁽¹⁾			

TABLE 12 - RESOLUTION AND MAXIMUM DETECTION RANGE AT ALS_PDDIV (1/4 PD used)											
	Т	YPICAL RESO	LUTION (lx/cn	t)		MAXIMUM POSSIBLE ILLUMINATION (Ix)					
	ALS_GAIN					ALS_GAIN					
IT (ms)	x 2	x 1	x 0.66	x 0.5		x 2	x 1	x 0.66	x 0.5		
400	0.0103	0.0205	0.0311	0.0411		673	1346	2040	2693		
200	0.0205	0.0411	0.0623	0.0822		1346	2693	4080	5385		
100	0.0411	0.0822	0.1245	0.1644		2693	5385	8160	10 771		
50	0.0822	0.1644	0.2490	0.3287		5385	10 771	16 319	21 542		
25	0.1644	0.3287	0.4980	0.6574		10 771	21 542	32 639	43 083		
12.5	0.3287	0.6574	0.9961	1.3148		21 542	43 083	65 278	86 166		
6.25	0.6574	1.3148	1.9921	2.6296		43 083	86 166	130 555	172 333		
3.125	1.3148	2.6296	3.9843	5.2593		(-) ⁽¹⁾	(-) ⁽¹⁾	(-) (1)	(-) ⁽¹⁾		

Note

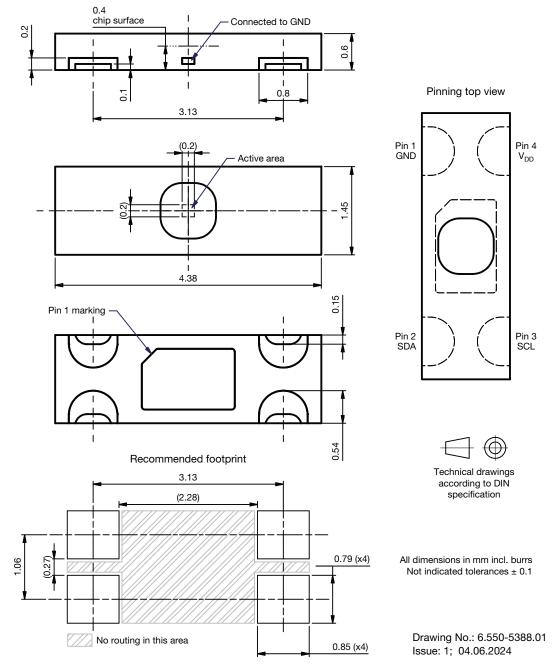
(1) For integration time of 3.125 ms the maximum count level is no longer 16 bit, so, half the integration time no longer leads to double the max. lux level

HANDLING INSTRUCTION

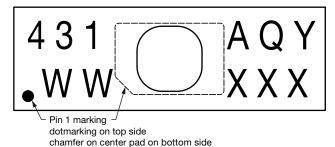
Special care must be taken into consideration when handling the VEML4031X00. The VEML4031X00 is sensitive to dust and scratches, proper optical device handling procedures are recommended.

The optical surface of the device must be kept clean for optimal performance in both prototyping with the device and mass production manufacturing procedures. Tweezers with plastic or rubber contact surfaces are recommended to avoid scratches on the optical surface. Avoid manipulation with metal tools when possible. The optical surface must be kept clean of fingerprints, dust, and other optical-inhibiting contaminants.

If the device optical surface requires cleaning, the use of isopropyl alcohol is recommended. A few gentle brushes with a soft swab are appropriate. Avoid potentially abrasive cleaning and manipulating tools and excessive force that can scratch the optical surface.


If the VEML4031X00 performs less than optimally, inspect the optical surface for dirt, scratches, or other optical artifacts.

The VEML4031X00 is a cost effective solution of ambient light sensor with I²C bus interface. The standard serial digital interface is easy to access "Ambient Light Signal" without complex calculation and programming by external controller. Beside the digital output also a flexible programmable interrupt pin is available.



www.vishay.com

PACKAGE DIMENSIONS in millimeters

MARKING AND PIN 1 IDENTIFICATION

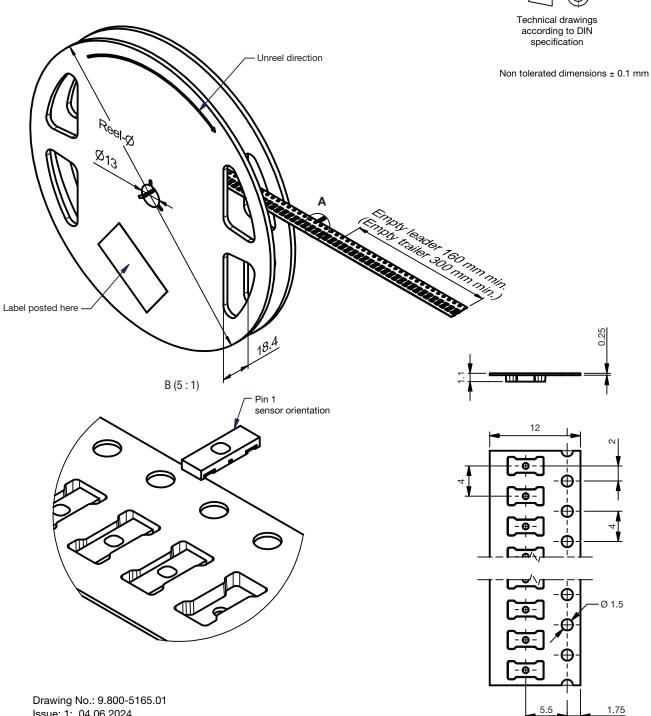
- 431: device typeA: address option (0, 1, 2, etc.)
- 0: qualification (0 = AEC-Q100)
- Y: year WW: week XXX: lot number

12

Document Number: 80348

For technical questions, contact: <u>sensorstechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VEML4031X00


Vishay Semiconductors

VISHAY www.vishay.com

TAPE AND REEL DIMENSIONS in millimeters

Reel size:

VEML40xx: Ø 180 mm ± 2 mm = 4500 pcs. Reel design is representative for different types.

13

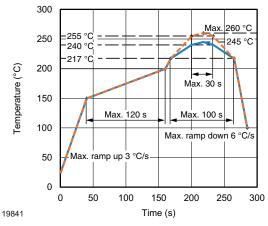
DRYPACK

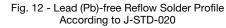
Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

FLOOR LIFE

Floor life (time between soldering and removing from MBB) must not exceed the time indicated on MBB label:

Floor life: 4 weeks


Conditions: T_{amb} < 30 °C, RH < 60 %


Moisture sensitivity level 2a, according to J-STD-020.

DRYING

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at 40 °C (+ 5 °C), RH < 5 %.

REFLOW SOLDER PROFILE

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1